National Energy Technology Laboratory Co-op Agreement No. DE-PS26-00NT 40898

Gasification Based Biomass Cofiring Project

Integration of poultry litter gasification with conventional PC fired power plant

B. Patel – Nexant, Inc.; Kevin McQuigg – Primenergy LLC;

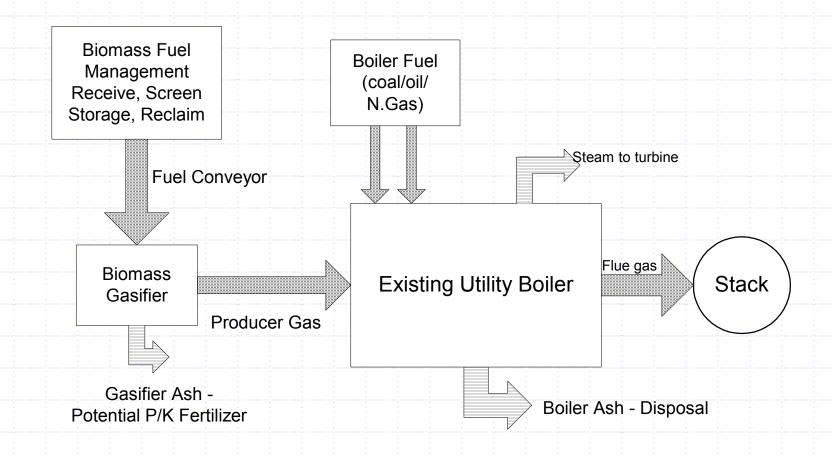
R. Tourney – WKE Inc.

NETL Project Manager Dr. Phil Goldberg

Participants

- ◆US DOE NETL program coordinator
- Nexant overall engineering and cost estimate
- Primenergy biomass gasification technology
- Western Kentucky Energy Corp feasibility study site - Reid plant

Project Concept


- Cofire an existing pulverized coal fired boiler with low-Btu gas produced from poultry litter gasification
- ♦ Within 100 km of plant ~120,000 t/y of poultry liter available
- Energy production alternative to land application

Project Concept (contd.)

Project Issues

- Optimize gasifier size that can be integrated with existing boiler
- Verify performance and operating parameters of gasifier on poultry litter
- Minimize impact on existing boiler operation
- No additional emissions from gasification
- Cost benefits for the host utility

Project Phases

- Feasibility study
 - Confirm fuel availability and characterization
 - Evaluate integration of gasifier and boiler
 - Determine optimum gasifier size
 - Prepare preliminary design and plant layout
 - Cost estimate and plant economics

Design Basis

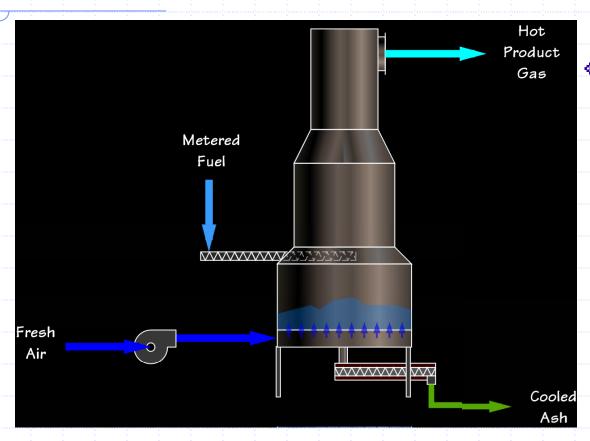
- Pulverized coal-fired Boiler
 - Fuel Kentucky coal
 - MCR 313,260 kg/h @ 90.63 bar,514° C
 (690,000 lbs/h steam @ 1,300 psig, 955° F)

As Burned	Sulfur in Coal	Air flow	Excess Air	Heat Release	Wind Box Pressure	Furnace Pressure
Coal kJ/kg (Btu/lb)	%	kg/h (lbs/h)	%	MMkJ (mmBtu/h)	N/m2 (" of WC)	(N/m2) (" of WC)
27,447 (11,800)	2.5 Max	323,112 (711,700)	22	881 (835)	2366 (9.5)	1619 (6.5)

Design Basis (contd.)

◆Gasifier Fuel – Poultry liter (droppings and biomass bedding)

Fuel Analysis


<u>Constituents</u>	As Received	<u>Dry Basis</u>
Moisture %	25~30	0
Fixed Carbon %	7~15	9~20
Volatiles %	35~45	50~67
Ash %	20~30	25~35
Sulfur %	0.4~0.7	0.5~0.9
Chlorine %	0.6~1.0	1.2~1.5
LHV kJ/kg (Btu/lb)	8,839-12,095 (3,800-5,200)	10,467-15,119 (4,500~6,500)

Design Basis (contd.)

Primenergy
KC-18, air
blown, fixedbed, updraft
counter flow

Design Basis (contd.)

- Gasifier Capacity 7.5 TPH of Litter
- ◆Product gas nominally 3,730 kJ/m3 @ 840°C (100 Btu/cu ft, @ 1400-1600°F)
- ◆ Total heat input from gasifier into the boiler 6-9% at MCR (50~75 MMBtu/h)
- Reduction in coal input with gasifier estimated at 2,000-2,900 kg/h (2.2 ~ 3.2 TPH)

Tasks Completed

- Established site specific and boiler operating data
- Developed expected gasifier operation and gas composition
- Preliminary boiler analysis, location and design of boiler penetration
- Confirmed fuel supply & fuel sample analysis

Tasks Completed (contd.)

- Completed fuel characterization
 - Proximate and ultimate analysis
 - Slagging characteristics
 - Sizing
- Preliminary designs for fuel handling, gasification, & boiler modifications
- Estimates of emission levels from cofiring

Material & Energy Balance

*	Po	u	ltry	/ L	itt	er

- Heating Value (LHV)
- Natural Gas (NG)*
- Heating Value (LHV)
- Ash Produced
- Heat Input from Gasifier
- Boiler Rating @ Design
- % Input from Gasifier
- Boiler Efficiency
- Gasifier Efficiency

8.2 t/h

4,200 Btu/lb

7,394 kg/h

9,769 kJ/kg

50,014 kJ/kg

880x10^6 kJ/h

1,960 kg/h

21 kg/h

46 lbs/h

21,502 Btu/lb

2.16 t/h

56.8 MMBtu/h 60x10^6 kJ/h

834 MMBtu/h

6.8 %

86.9 %

81.8 %

^{*} Natural Gas for staged combustion of gases in reducing atmosphere.

Material & Energy Balance (contd.)

Turbine Output (design) 65,851 kWe
 Turbine Heat Rate 8,863 Btu/kWe 9,350 kJ/kW
 Output Due to Gasifier 4,484 kWe

Less Aux Load for Gasifier410 kWe

Net Gasifier Output4,075 kWe

Boiler Capacity Factor 70 %/year

Gasifier Capacity Factor 90 %/year

Total Poultry Litter Usage 44,984 tpy 40,809,485 kg/y

• Total NG Usage 253,865 lbs/y 115,153 kg/y

◆ Total Ash Produced 11,910 tpy 10,804,752 kg/y


◆ Total Power Produced from the Gasifier 22,486,260 kWh / year

Proposed Gasifier Location

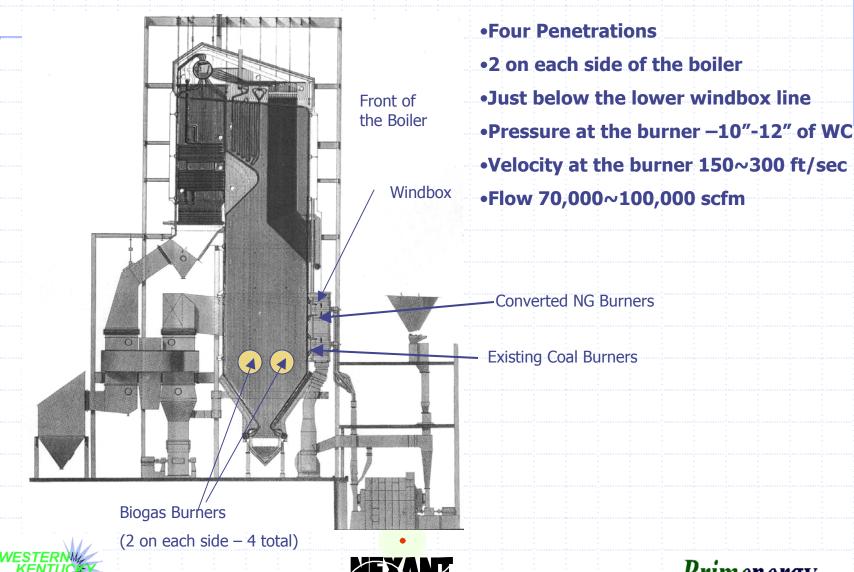
Reid Plant Boiler

Gasifier Island

Fuel Receiving and Storage

Fuel Storage Area

Fuel Conveying



Boiler Penetrations

Conclusions

- Potential Project Benefits
 - Environmentally more acceptable renewable and premium power
 - Reduced landfill and runoff into waterways
 - Potential for reduced fuel cost
 - Potential for fertilizer from ash (P/K)
 - Gasification external to the boiler offers flexibility in biomass fuels

